
Swarm Visualiser - COS 301 Main Project
Testing Specifications

Team: Dragon Brain
Members:

Matheu Botha u14284104
Renton McInytre u14312710
Emilio Singh u14006512

Gerard van Wyk u14101263

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Scope . 2
1.3 Test Environment . 2
1.4 Assumptions and Dependencies 3

2 Test Items 3

3 Functional Features to be Tested 3
3.1 Snapshot Manager . 3
3.2 General Optimiser . 4
3.3 Settings Package . 4

4 Test Cases 4
4.1 Snapshot Manager . 4

4.1.1 Case 1: Generating a Snapshot 4
4.1.2 Case 2: Generating a Snapshot Queue 5

4.2 General Optimiser . 5
4.2.1 Case 1: Hill-climber OPT Process 5
4.2.2 Case 2: Conical PSO OPT Process 5
4.2.3 Case 3: General PSO OPT Process 6

4.3 Settings Package . 6
4.4 Case 1: Generatng a SettingsPackage Object 6
4.5 Objective functions . 7
4.6 Case 1: Generating a sinObjective 7
4.7 Case 2: Checking the integrity of the AckleyObjective 7
4.8 Particle . 8

4.8.1 setVelocity . 8
4.8.2 setPositionAtDimension 8
4.8.3 getVelocity . 8

4.9 Graphics Processor . 9
4.9.1 Case 1: Generating a Graphics Processor 9
4.9.2 Case 2: Generating a Landscape Mesh 9
4.9.3 Case 3: Generating a particle System 9

5 Item Pass/Fail Criteria 9
5.1 General Optimiser: OPT Process 10

1

6 Detailed Test Results 10
6.1 Snapshot Manager . 10

6.1.1 Case 1: Generating a Snapshot 10
6.1.2 Case 2: Generating a Snapshot Queue 10

6.2 General Optimiser . 11
6.2.1 Case 1: Hill-climber OPT Process 11
6.2.2 Case 2: Conical PSO OPT Process 11
6.2.3 Case 3: General PSO OPT Process 11

6.3 Particle . 12
6.3.1 setVelocity . 12
6.3.2 setPositionAtDimension 12
6.3.3 getVelocity . 12

6.4 Settings Package . 13
6.4.1 Case 1: Generating a SettingsPackage Object 13

7 Other 13

8 Conclusions and Recommendations 14

9 Appendix- Unit Testing Examples 15

2

1 Introduction

1.1 Purpose

This document describes the testing methodologies and frameworks used in
the Swarm Visualiser project by team DragonBrain. The general purpose
of the project is to create a functional experimental and teaching tool that
allows the functioning of a Particle Swarm Optimisation problem solver to be
conceptualised and visualised to display a more comprehensible impression
of the inner workings of such systems.
This document serves as a recording of the methods and specific tests used
to ensure proper functionality of the project, thus permitting proper test
driven development processes to be followed. This is a necessity in order to
ensure that the system in question has minimal risk of failure as the system
develops.

1.2 Scope

This document is structured as follows:

• Tests that have been identified are specified in section 2.

• Features to be tested are specified in section 3.

• Sections 4 through 6 will discuss the tests indepth.

• Section 7 will discuss the results of the testing.

• Sections 8 and 9 will conclude with additional comments and expla-
nations.

• The remainder of this section will be used to discuss the testing envi-
ronment, as well as assumptions and dependencies.

1.3 Test Environment

The environment of the testing system is as follows:

• Programming Languages: C++ has been used as the base language
with which the system is coded. Additionally, graphical subsections
of the system make use of OpenGL and the Graphical User Interface
is made using Qt libraries.

3

• Testing Frameworks: The system’s unit tests are run and handled
using the cross-platform Unit Testing library, Google Test, Google’s
own testing framework for C++ applications.

• Coding Environment: All coding has been done using CLion, Jet-
brains’ IDE for C++ (which has integrated support for Google Tests),
along with CMake for automated building of the system.

• Operating System: In true spirit of cross-compatibility, tests have been
run under two particular operating systems, namely Windows 10 and
Linux Mint (a distribution of Linux).

1.4 Assumptions and Dependencies

For the sake of these tests, the following dependencies between subsystems
are assumed:

• The Manager depends upon the Settings Package, the Graphics Pipeline,
the General Optimiser and the Snapshot Manager.

• The Graphics Pipeline depends on the Snapshot Manager and the
Settings Package.

• The General Optimiser depends on the Snapshot Manager and the
Settings Package.

2 Test Items

Following is a list of the unit tests performed:

• Snapshot Manager subsystem functionality.

• General Optimiser subsystem functionality.

• Settings Package subsystem functionality.

3 Functional Features to be Tested

3.1 Snapshot Manager

The features to be tested are as follows:

• The ability of the subsystem to create a correct snapshot of the current
particle situation.

4

• The ability of the subsystem to correctly function as a standard queue
of snapshots (hence, the ability to enqueue and dequeue snapshots
correctly).

• The ability of the subsystem to handle additional bounded queue func-
tionality.

These are all low level tests that will be tested with a series of simple
assertion-like methods, to ensure that the queue functions as it is meant
to. The queue’s main design requirement is Scalability.

3.2 General Optimiser

The features to be tested are as follows:

• The ability of the subsystem to correctly generate particle objects.

• The ability of the subsystem to correctly generate a swarm with a valid
n-matrix.

3.3 Settings Package

The features to be tested are as follows:

• The ability of the subsystem to create a valid Graphics Settings Pack-
age.

• The ability of the subsystem to create a valid Problem Domain Settings
Package.

• The ability of the subsystem to create a valid Optimiser Settings Pack-
age.

4 Test Cases

4.1 Snapshot Manager

4.1.1 Case 1: Generating a Snapshot

• Objective: To ensure basic generation of a Snapshot is functional.

• Input: An array of Particles and an array of integers representing the
links between them.

• To assume a pass result, the expected outcome is for a single Snapshot
which has the Particles and links as members to be created.

5

4.1.2 Case 2: Generating a Snapshot Queue

• Objective: To ensure basic generation of a Snapshot is functional.

• Input: An array of Particles and an array of integers representing the
links between them.

• To assume a pass result, the expected outcome is for a single Snap-
shot which has the Particles and links as members to be created, which
is then expected to be enqueued into the Snapshot Manager and de-
queued successfully.

4.2 General Optimiser

4.2.1 Case 1: Hill-climber OPT Process

• Objective: To ensure that during a single iteration, using the Hill-
Climber process,that the particles are able to perform an optimisation
action.

• Input:

– A Snapshot consisting of the following:

∗ A particle Swarm

∗ An Objective Function

• To assume a pass result, the expected outcome is for at least one
particle in the swarm to be at a position better than it originally was.
In ideal conditions, the swarm would have every particle reach a better
position, the best, and reach a convergence point but for the purposes
of testing, at least one particle needs to be in a position better as
defined by its objective function.

4.2.2 Case 2: Conical PSO OPT Process

• Objective: To ensure that during a single iteration, using the Conical
Particle Swarm Optimisation process,that the particles are able to
perform an optimisation action.

• Input:

– A Snapshot consisting of the following:

∗ A particle Swarm

6

∗ An Objective Function

• To assume a pass result, the expected outcome is for at least one
particle in the swarm to be at a position better than it originally was.
In ideal conditions, the swarm would have every particle reach a better
position, the best, and reach a convergence point but for the purposes
of testing, at least one particle needs to be in a position better as
defined by its objective function.

4.2.3 Case 3: General PSO OPT Process

• Objective: To ensure that during a single iteration, using the gen-
eral particle swarm optimisation process,that the particles are able to
perform an optimisation action.

• Input:

– A Snapshot consisting of the following:

∗ A particle Swarm

∗ An Objective Function

• To assume a pass result, the expected outcome is for at least one
particle in the swarm to be at a position better than it originally was.
In ideal conditions, the swarm would have every particle reach a better
position, the best, and reach a convergence point but for the purposes
of testing, at least one particle needs to be in a position better as
defined by its objective function.

4.3 Settings Package

4.4 Case 1: Generatng a SettingsPackage Object

• Objective: To instantiate a SettingsPackage Object comprised of A
ProblemDomainSettingsPackage, GraphicsSettingsPackage, and an Op-
timizerSettingsPackage, as well as some local independent variables.

• Input: A series of values for initialization of the various components

• : To assume a pass result, it must be confirmed that all composing
objects of the SettingsPackage Object contain the attributes that are
expected.

7

4.5 Objective functions

4.6 Case 1: Generating a sinObjective

• Objective: To instantiate a specific objective function(sinObjective)
and test that it returns a value in the correct range, for a given random
input.

• Function: sinObjective calculates the formula sin(x)+sin(y), where x
and y are the 2 input parameters.

• Input:

– a sinObjective instance does not require any parameters for its
constructor.

– the function in sinObjective is called with random parameters to
assure that it is tested with a diversity of values, making the test
more robust.

• To achieve a pass result the value returned by sinObjective(after being
called with random parameters) should always be within the range
[0,2], if the returned value is outside of that range it is a fail result.

4.7 Case 2: Checking the integrity of the AckleyObjective

• Objective: Determine if the Ackley Objective function is functioning
as expected.

• Function:

f(x0 · · ·xn) = −20exp(−0.2

√√√√ 1

n

n∑
i=1

x2i)−exp(
1

n

n∑
i=1

cos(2πxi))+20+e

−32 ≤ xi ≤ 32

minimum at f(0, ... ,0) =0

• Input:

– An AckleyObjective instance does not require any parameters for
its constructor.

8

– The function in AckleyObjective is called with the specific value
of (0,0) and then with a random value at any point other than
(0,0).

• If the function returns 0 for (0,0) and any positive value for the ran-
domly chosen point, then it passes, otherwise it fails.

4.8 Particle

4.8.1 setVelocity

• Objective: To ensure that a particle’s velocity value can be set by
being passed an external vector.

• Input: An array consisting of double values of a pre-specified length.

• To assume a pass result, the expected outcome is for the private ar-
ray representing the particle’s position vector to be set to exactly the
values specified by the passed in array.

4.8.2 setPositionAtDimension

• Objective: To ensure that a particle’s position vector at a specific
dimension can be set by being passed an external value.

• Input: Two double values: one representing the position value, the
other the dimension.

• To assume a pass result, the expected outcome is for the private array
at the specified dimension, representing the particle’s position vector,
to be set to exactly the value specified by the parameter passed in.

4.8.3 getVelocity

• Objective: To ensure that a particle’s velocity value can be set by
being passed an external vector.

• Input: No input.

• To assume a pass result, the value returned must be the same as the
value stored by the particle that getVelocity was called on.

9

4.9 Graphics Processor

4.9.1 Case 1: Generating a Graphics Processor

• Objective: Ensure that a Graphics Processor is correctly instantiated
with an objective function and a snapshot manager.

• Input: An objective function representing some mathematical formula.

• To assume a pass result, the expected outcome is for the graphics
processor to correctly create a mesh from the given objective function
as well as be able to dequeue from the snapshot manager and create
a particle system from the snapshot.

4.9.2 Case 2: Generating a Landscape Mesh

• Objective: Ensure that a mesh can be generated from a objective
function.

• Input: An objective function representing some mathematical formula.

• To assume a pass result, it is expected that the given objective function
will produce values from given co ordinates and create an accurate
mesh that can be drawn to the screen.

4.9.3 Case 3: Generating a particle System

• Objective: Ensure that a particle system can be generated from the
snapshot manager.

• Input: A valid snapshot manager.

• To assume a pass result, it is expected that the graphics processor will
be able to dequeue from the snapshot and use the particle co ordinates
to create a particle system.s

5 Item Pass/Fail Criteria

Each item tested must meet criteria specific to its particular scenario in
order to be considered passed or failed. These are tested with assertions
and similar methodologies, hence if an item is failed it will be detected as
such by Google Tests.

10

5.1 General Optimiser: OPT Process

In general, the difficulty of testing is predicated on the stochastic nature
of the particle system, exact precise testing is difficult. However, that being
said, there are certain capacities that would be considered fail and considered
a pass.

The passing condition would require any combination of the following:

• At least one particle is in a better position according to the appropriate
function.

The failing condition would require the following:

• More than 50 percent of the particle swarm ended in a worse position
than the previous iteration and it continues for at least some propor-
tional(x) degree of the total number of iterations.

6 Detailed Test Results

6.1 Snapshot Manager

6.1.1 Case 1: Generating a Snapshot

The following results were obtained from the tests conducted. The tests to
produce the following results have passed and the reasons are stated below.

• Created Snapshot Object and confirmed that the links are as they
were expected to me.

• Snapshot Object has a list of particles matching the expectation.

6.1.2 Case 2: Generating a Snapshot Queue

The following results were obtained from the tests conducted. The tests to
produce the following results have passed and the reasons are stated below.

• Basic Enqueue/Dequeue check passes (item enqueued correctly matches
dequeued item).

• Bounded Queue behaviour demonstrated correctly (no further items
enqueued after [bound] number of items have been enqueued).

• Dequeue fails correctly when attempting to dequeue from an empty
queue.

11

6.2 General Optimiser

6.2.1 Case 1: Hill-climber OPT Process

The following results were obtained from the tests conducted. The tests to
produce the following results have passed and the reasons are stated below.

• The Hill-Climber process is considered to be stable. By this, this
means that the probability of any of the particles not becoming even
slightly more improved is very low. Even in stable stochastic settings,
it is very unlikely that, for sufficiently large swarms, none of the parti-
cles achieve some position at termination of the run less optimal than
their position at the start.

1. A sufficiently large test swarm, 20 particles, was used.

2. The Marsenne Twister Pseudo Random number generator im-
proves the stochastic reliability of the test.

6.2.2 Case 2: Conical PSO OPT Process

The following results were obtained from the tests conducted. The tests to
produce the following results have passed/failed and the reasons are stated
below.

• The Conical PSO process is considered to be stable. By this, this
means that the probability of any of the particles not becoming even
slightly more improved is very low. Even in stable stochastic settings,
it is very unlikely that, for sufficiently large swarms, none of the parti-
cles achieve some position at termination of the run less optimal than
their position at the start.

1. A sufficiently large test swarm, 20 particles, was used.

2. The Marsenne Twister Pseudo Random number generator im-
proves the stochastic reliability of the test.

6.2.3 Case 3: General PSO OPT Process

The following results were obtained from the tests conducted. The tests to
produce the following results have passed/failed and the reasons are stated
below.

12

• The PSO process is considered to be stable. By this, this means that
the probability of any of the particles not becoming even slightly more
improved is very low. Even in stable stochastic settings, it is very
unlikely that, for sufficiently large swarms, none of the particles achieve
some position at termination of the run less optimal than their position
at the start.

1. A sufficiently large test swarm, 20 particles, was used.

2. The Marsenne Twister Pseudo Random number generator im-
proves the stochastic reliability of the test.

6.3 Particle

6.3.1 setVelocity

The following results were obtained from the tests conducted. The tests to
produce the following results have passed and the reasons are stated below.

• The velocity passed in was a double value in the range of allowable
values.

• The particle was correctly initialised.

6.3.2 setPositionAtDimension

The following results were obtained from the tests conducted. The tests to
produce the following results have passed/failed and the reasons are stated
below.

• The position value passed in was a double value in the range of allow-
able values.

• The dimension value was within the range of dimensionality of the
position vector.

• The particle was correctly initialised.

6.3.3 getVelocity

The following results were obtained from the tests conducted. The tests to
produce the following results have passed/failed and the reasons are stated
below.

13

• The Velocity value provided was within the range of allowable veloci-
ties.

• The particle was correctly initialised with correct initial values.

6.4 Settings Package

6.4.1 Case 1: Generating a SettingsPackage Object

The following results were obtained from the tests conducted. The tests to
produce the following results have passed and the reasons are stated below.

• Object’s own attributes are confirmed equal to the expected values.

• ProblemDomainSettingsPackage Object’s attributes are confirmed equal
to expected values.

• GraphicsSettingsPackage Object’s attributes are confirmed equal to
expected values.

• OptimizerSettingsPackage Object’s attributes are confirmed equal to
expected values.

7 Other

• Firstly, a comment needs to be made regarding the use of Maven.
Maven is a build system that is somewhat at odds with the project
structure and project specifications. C++ is a language that encour-
ages the use of two kinds of files, h and cpp, in order to construct a
single class. Couple this together with inherently standalone nature
of the project and it creates an additional, but not necessarily better
or needed, requirement to configure a Maven build system. Currently,
the existing system is an integration of the CLion IDE by Jet Brains
with Github. The IDE is capable of opening and launching a project
using MakeList files written by us directly out of a branch from Github.
To that end, our current strategy is to have stable and development
branches of any component and develop directly out of the branches
including building.

• Contracts and Mock Objects have been used in the project. The latter
used heavily during earlier development of the project was required in

14

order to test the Graphics Processor as it could not be tested with-
out Mock Objects. The former has been extremely useful in terms
of clearly specifying the requirements of components of the system.
System components would have their requirements and services spec-
ified clearly by contracts and those would be used to ensure system
correctness.

• The deployability of the project to an application server is an interest-
ing question. In general the project is stated to have performance as a
key quality requirement. Extrapolating the service to an application
server would require some significant changes to enable high perfor-
mance over a network. Application servers generally are a Java specific
component and again, that stands at odds with the C++ that was re-
quired for the project so we believe that deployment to an application
server is not advisable with the project.

8 Conclusions and Recommendations

There are two fundamental limitations to the testing included here in this
document. The first is that due to the stochastic nature of the underly-
ing optimisation strategies, it is essentially impossible to precisely define
parameters during testing. So largely, this means that testing consists of
observing that general positive or negative trends become apparent rather
than being able to accurately and specifically check for values. The second
limitation would be the Graphics Processor itself. The Graphics Processor
produces visual output mapped to a screen which is difficult to rigorously
test according to unit testing specifications.

A mention needs paying to the testing environment which has been slightly
troublesome. Early on in the development of the project, CLion was chosen
as the development environment because it offered very many features and
integrations that did not exist in many other competing products. However,
its one limitation would be that only one testing framework is implemented,
Google Test, for it. Google Test requires a specific project structure and
that imposition is unfortunately one of the trade-offs made in the design
process.

In conclusion, the document presented here is a summation of the most
important aspects to the testing and refining of the project. The provisions

15

made here hopefully illuminate the reader on the more technical aspects of
the project.

9 Appendix- Unit Testing Examples

Below are all of the unit test example screenshots presented here because
of the size of the screenshots and to prevent a cluttered paragraph structure.

Figure 1: Example Unit Test Performed

16

Figure 2: Example Unit Test Performed

Figure 3: Example Unit Test Performed

17

Figure 4: Example Unit Test Performed

18

