
Software Engineering Project (COS 301)

Software User Manual
Version 0.2, September 2016

Team:

Emilio Singh u14006512

Gerard van Wyk u14101263
Matheu Botha u14284104
Renton McIntyre u14312710

Overview

SwarmViz is a program that visualises how optimisation algorithms work.

Optimisation algorithms are a type of Artificial Intelligence that are used
to automatically solve complex real-world problems in science,
engineering, finance, and military research & development.

With SwarmViz anyone can gain an understanding of how these
sophisticated problem-solving algorithms work by letting the user play
around with trying different optimisation algorithms to solve different
example problems.

Software Installation

There are currently 2 ways to install the program. Each will be detailed
below.

Linux Installation
The base Linux installation has the following software requirements:

1) Qt
2) OpenGL
3) GLEW
4) SDL2
5) FreeType2
6) ⁠⁠⁠SDL2_image
7) SOIL

Please note that the code for the project can must be fetched from the Git
repository via the link provided.

Once you have all of these, the installation process will then consist of
navigating to the folder with containing the project makefile.
The program is compiled with cmake.
Once this is done, the program will be compiled and executed and start
up.

Software Usage

1. Run the SwarmViz executable, the following screen should appear:

2. Use this page to edit your desired settings. These include:

● General Configuration

○ Optimization Algorithm - Determines the optimizer that will
attempt to solve the provided problem domain.

○ Max Iterations - The number of iterations of the optimization
algorithm, before it stops and settles at a final location.

● Environmental Configuration
○ Swarm Size - The number of particles (potential solutions to

the problem) that attempt to solve. In algorithms such as
basic Particle Swarm Optimization, where there is a “social”
effect (particles positions’ affect each other), this can be a
huge factor influencing the efficiency of the algorithm.

○ Number of Optimizers: Explained in next section.
○ Number of Dimensions - Determine whether optimizing on a

1D function mapped to a 2D landscape or a 2D function
mapped to a 3D landscape (height is always fitness).

○ Boundaries - ​[Optional] ​If you would like to not use the default
values for the landscape function, enter boundary values for
the dimension(s). If you would like to return to default values
on further runs, set all values back to 0.

● Transformations​ - ​[Minor] ​These scale and shift values can alter the
values upon which the algorithms function. Scale will rarely have a
visible effect in the visualiser, due to the normalisation of graphical
components. A shift will generally affect the bounds (and thus the
landscape).

● System configuration
○ Objective choice - Determines the landscape that the

optimization algorithm traverses. The landscape is created by
mapping a mathematical function.

○ Resolution - Determines the size of the graphical window
created. Choose a value that suits your display size and GPU
capabilities.

3. ​Choosing number of optimizers

As mentioned before, the Environmental Configuration contains an option
for the number of optimizers, allowing options 1, 2 or 4. When increased,
the user is given the ability to select more optimization algorithms. The
visualizer, when run, will display these optimizers on an identical
landscape next to each other, thus allowing efficient comparison of the
two. The screen will now look as follows:

4. When selecting Particle Swarm and its derivatives, further options
appear under ​System Configuration ​(algorithm dependent). These include

● Social Coefficient
● Cognitive Coefficient
● Inertia Weight
● Success and Fail counts
● Maximum velocity
● Constriction Coefficient
● Neighbourhood Size

These values are what you should have fun fiddling with in order to make
these optimizers perform differently. Enjoy!

5. You are now ready to click the “On” button and experience the magic!

6. After some problem-dependent delay, you should see a graphical
window open and the animation process to begin. For example, you could

see a screen like Figure A, slowly move to be like Figure B. Feel free to
explore the environment in this time, observe behaviour and learn. :)

Figure A Figure B

7. When the vizualization is over, you can close that screen and continue
to perform vizualizations from the User Interface.

