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ABSTRACT 
Particle Swarm Optimization (PSO),is well known technique for 

population based global search but its limitation to premature 

convergence before finding the true global minimiser .In this paper 

We introduce a technique by adding new parameters and a new 

velocity update formula using personal best value discovered by the 

swarm particles and decreasing the diameter of search space which 

prevents premature convergence before finding the true global 

minimiser. The resulting particle swarmoptimization (PGCPSO) 

provides a mechanism which is more efficient in finding true global 

minimizer while it was  tested across the benchmark suite . 
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1. INTRODUCTION  

The term optimization refers to the study of problems in which one 

seeks to minimize or maximize a real function by systematically 

choosing the values of real or integer variables from within an 

allowed set. On one hand, a vast amount of research has been 

conducted in this area of knowledge with the hope of inventing an 

effective and efficient optimization algorithm. On the other hand, the 

application ofexisting algorithms to real projects has also been the 

focus of much research. The most commonly used optimization 

technique known as evolutionary computation (EC)[8]. Broadly 

speaking, EC constitutes a generic population-based 

metaheuristicoptimization algorithm. Evolutionary algorithms tend to 

perform well with regard to most optimization problems. This is the 

case because they refrain from simplifying or making assumptions 

about the original form. As a newly developed subset of EC, the 

Particle Swarm Optimization hasdemonstrated its many advantages 

and robust nature in recent decades. It is derived from the social 

behaviour of bird flocks in particular. Inspired by the swarm 

intelligence theory,Kennedy created a model which Eberhart then 

extended to formulate the practical optimization methodknown as 

particle swarm optimization (PSO) [1]. The algorithm behind PSO is 

based on the idea that individuals are able to evolve by exchanging 

information with their neighbours through social interaction. This is 

known as cognitive ability. 

Three features impact on the evolution of the individual: Inertia 

(velocities cannot be changed abruptly), the individual itself (the 

individual could go back to the best solution found so far) and social 

influences (the individual could imitate the best solution found in its 

neighbour). PSO has a very common problem of stagnation and 

premature convergence, especiallyin multi modal function[7]. A lot 

ofresearch work have been done to improve the convergence 

behaviour of PSO. With this motivation we have tried to invent a new  

 

variant of particle swarm optimization using the concept of 

Guaranteed Convergence Particle Swarm Optimization (GCPSO) [2] 

proposed by Van Der Bergh in 2002 which yields much better result 

than GCPSO.There is still a problem in GCPSO[3], however, in that 

particles tend to converge to a local minimizer before encountering a 

true global minimizer due to lack of exploration. 
Addressing this problem, Van den Bergh[6] developed multi-start 

PSO (MPSO) whichautomatically triggers a restart when stagnation 

is detected. Various criteria for detecting premature convergence 

were tested in order to avoid the undesirable state of stagnation. It 

was thought that restarting on the original search space might cause 

unnecessarily repetitious searching of regions not expected to contain 

quality solutions. GCPSO might even allow the swarm to escape 

local optima ifparameters were designed with exploratory intentions, 

but this approach would effectivelyleave the rest of the swarm 

trailing almost linearly behind the globally best particles random 

movements, which would not be ideal. So a mechanism known to be 

regrouping PSO(RegPSO)[4] became desirable by which the swarm 

could efficiently regroup in a region small enough to avoid 

unnecessarily redundant search, yet large enough to escape wells 

containing local minima in order to try to prevent stagnation while 

retaining memory of only one global best rather than a history ofthe 

best of them. Consequently, there is one continuous search with each 

groupingmaking use of previous information rather than a series of 

independent searches.It produced better results than it's previous 

versions but this approach also lacks the exploration ability within the 

particles so to deal with this problem we propose an approach called 

guaranteed convergence PSO(PGCPSO) which could increase the 

exploration ability of particles while keeping the convergence rate 

fast and keeping a common approach of escaping local minima. 

A roadmap of this paper is as follows. Related work is discussed in 

Section 2. A novel variant of GCPSOcalled PGCPSO is presented in 

Secton 3. Experimental  results from Benchmark functions is 

discussed in Section 4. Section 5 covers the conclusion. 

 

2. Related Work 
PSO was introduced by Kennedy and Eberhart [1]. The behaviour of 

PSO can be envisioned by comparing it to bird swarms searching for 

optimal food sources, where the direction in which a bird moves is 

influenced by its current movement, the best food source it ever 

experienced, and the best food source any bird in the swarm ever 

experienced. In other words, birds are driven by their inertia, their 

personalknowledge, and the knowledge of the swarm. In terms of 

PSO, the movement of a particle is influenced by its inertia, its 

personal best position, and the global best position. PSO has multiple 

particles, and every particle consists of its current objective value, its 

position, its velocity, its personal best value, that is the best objective 

value the particle ever experienced, and its personal best position, 

that is the position at which the personal best value has been found. 

In addition, PSO maintains the global best value, that is the best 

objective value any particle has ever experienced, and theglobal best 

position, that is the position at which the global best value has been 

found. Classical PSO uses the following iteration to move the 

particle: 

 x(i)(t + 1) = x(i)(t) + v(i)(t + 1)                             (1) 
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x(i); is the position of particle i, at a timestamp t, and v(i); is the 

velocity of particle i. In classical PSO, the velocity of the particle is 

determined using the following iteration: 

 

vi;j(t+1) = vi(t)+c1r1;j(t)[pbest-xi;j]+c2r2;j [gbest-xi;j(t)]        (2) 
 
pbest is the best value of an individual particle and gbest is the global 

best position and c1 and c2 are the constant with value which is equal 

to 2 whereas r1 and r2 are random variables.PSO can focus on either 

convergence or diversity at any iteration. To focus on diversity means 

particles are scattered, searching a large area coarsely. To focus on 

convergence means particles are close to each other, searching a 

small area intensively. A promising strategy is to focus on diversity 

in early iterations and convergence in later iterations. 

PSO has two major drawbacks. The first drawback of PSO is its 

premature character, i.e. it could converge to local minimum. 

Although PSO converges to an optimum much faster than other 

evolutionary algorithms, it usually cannot improvethe quality of the 

solutions as the number of iterations is increased. PSO usually suffers 

from premature convergence when high multi-modal problems are 

being optimized. The main reason is that for the standard PSO 

particles converge to a single point which is on the line connecting 

the global best and the personal best positions. Nevertheless this 

point is not guaranteed to be a local optimum and may be 

calledequilibrium point. The second drawback is that the PSO has a 

problem-dependent performance. This dependency is usually caused 

by the way parameters are set, i.e. assigning different parameter 

settings to PSO will result in high performance variance. After the 

PSO was issued, several considerations has been taken into account 

to facilitate the convergence and prevent an "explosion" of the 

swarm. These considerations focus on limiting the maximum 

velocity, selecting acceleration constants, constriction factor etc. 

 

2.1 GCPSO: Guaranteed Convergence PSO 
The basic idea of GCPSO[3] is to introduce an additional particle, 

which searches the region around the current global best position, i.e. 

its local best position is equal to the current global best position. In 

that manner, the current global best particle is treated also as a 

member of the swarm(e.g. particle ), the update formula for this 

particle is seen below: 

 
v

φ
(t + 1) = x

φ
(t) + gbest(t) + ωv

φ
(t) + ρ(t)(1 -2r)           (3) 

 
It is noted that this variant is so far only applied to the Gbest mode.The 

other particles in the swarm continue to use the normal velocity 

update formula, e.g. formula (3). Here the term xφ (t) + gbest(t)  looks 

like the global cognitive part in formula (3). Because the global best 

position and the individual best position are coincident. ρ(t)(1 - 2r) 

substitutes the "social" part of the formula (3) to increase its search 

ability, which causes the additional particle to perform a random 

search in an area surrounding the global best position. Here r is a 

vector randomly generated in the domain [0, 1] and ρ(t) is the 

diameter of the search area and dynamicallyadapted based on the 

behaviour of the swarm, i.e. if the swarm always finds a better 

position than the current global best position in consecutive 

iterations, the search diameter will become larger, if the swarm 

always fails to find a better position than the current global best 

position in consecutive iterations, the search diameter willbecome 

smaller. The update formula of the diameter is as follows: 

 

ρ(t+1) =  

2𝑝 𝑡              #𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 > 𝑠𝑐

 
1

1.5
 𝑝 𝑡          #𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 > 𝑓𝑐

𝑝 𝑡                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 
Where terms #successes and #failures are defined as the number of 

the consecutive successes or failures, respectively, and the definition 

of failure is . The threshold parameters sc and fc are defined 

empirically. Since in a high dimensional search space, it is difficult to 

obtain a better value in only a few iterations, thus recommended 

values are thus sc = 15 and fc = 5. On some benchmark tests, the 

GCPSOhas shown a nice performance of locating the minimal of a 

unimodal function withonly a small amount of particles. This implies 

that it does not need many particlesto facilitate a local search. 

Compared with the original PSO, it also has a fasterconvergence on 

unimodal functions. This approach is a good supplement to 

theoriginal PSO, however it has a small aw, i.e. sometimes if the 

current global bestposition is located on a local minimum which is 

not near the global minimum, theadditional particle could possibly 

fail to find any better position around this localminimum and the 

algorithm would converge to the local minimum eventually. 

 

3. Our ApproachGCPSO Using Personal Best: 

PGCPSO 
The goal of the proposed GCPSO using personal best  (GCPSO) is to 

not to limit the exploration ability to the few particles but to provide 

the opportunity to the other particles in the swarm so that they can 

escape from the local minimum. InPGCPSO an additional particle(φ) 

similar to GCPSO is introduced which searches the region around the 

current personal best position, In that manner, the current update 

formula for this particle is seen below: 

 
v

φ
(t + 1) = x

φ
 (t) + pbest(t) + ωv

φ
 (t) + ρ(t)(1 -2r)          (4) 

 
 
The other particles in the swarms are updated as per the formula 

introduced in PBPPSO 

 
vi(t) = ω * vi(t-1)+c1*r1(t) * (pbest;ixi(t))+c2* r2(t) * (-xi(t))     (5) 
 
Here the term -xφ (t) + pbest(t) gives the particle ability to search as 

per their personal best position. ρ(t)(1-2r) substitutes the "social" part 

of the formula (4) to increase its search ability, which causes the 

additional particle to perform random search in an area surrounding 

the global best position. Here r is a vector randomly generated in the 

domain [0, 1] and ρ(t) is the diameter of the search area and 

dynamically adapted based on the behaviour of the swarm, i.e. if the 

swarm always finds a better position than the current global best 

position in consecutive iterations, the search diameter will become 

larger, if the swarm always fails to find a betterposition than the 

current global best position in consecutive iterations, the search 

diameter will become smaller. The update formula of the diameter is 

as follows: 

 
 
 

ρ(t+1) =  

2𝑝 𝑡              #𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 > 𝑠𝑐

 
1

1.5
 𝑝 𝑡          #𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 > 𝑓𝑐

𝑝 𝑡                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where terms #successes and #failures are defined as the number of 

the consecutive successes or failures, respectively, and the definition 

of failure is . The threshold parameters sc and fc are defined 

empirically. Since in a high dimensionalsearch space, it is difficult to 

obtain a better value in only a few iterations, thus recommended 

values are thus sc = 15 and fc = 5. Whereas the equation (4) gives the 

liberty to the other particles which are not best to search the space in 

theirrespective direction of personal best and if any of the particles 

evaluates with the better value than the previously defined best 

particle then that particle is replaced with the best particle and the 

search is concentrated as per the new value found. 
All other previous versions of PSO performed well in unimodal 

function but when it's the case of multimodal function their efficacy 

was not upto the expectation because in previous versions all the 

particles didn't had the opportunity infinding the global minimum as 

it was limited to few best particles. In PGCPSO equation(4) leads the 

other particles in escaping the local minima as the values lead ny the 

best particle may not always lead to the global minima so it becomes 

necessary to provide the other particles with the exploration ability in 

their defined search space and direction to avoid premature 

convergence and stagnation. In casestagnation or premature 

convergence occurs in PGCPSO it can be resolved using MPSO or 

RegPSO as PGCPSO is not totally free from premature convergence. 

 

4.Result and analysis 
In this papertested that has been used to authenticate the proposed 

PGCPSO algorithm consists of five benchmark functions[9].Ackley 

function, Rastrigin function, Spherical function, Quartic function, and 

Griewenk function are the benchmark functions. 

 
Table 1.  Benchmark Function 

 

Function 

 
Mathematical Representation Range 

Ackley f(x)= -20 * exp(-

0.2 1
𝑛  𝑥𝑖

2𝑛
𝑖=1 ) – 

exp( 1
𝑛  cos 2𝜋𝑥𝑖 ) +𝑛

𝑖=1

 20+𝑒 

[-32.0, 

32.0] 

Rastrigin f(x)= [𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 +𝑛

𝑖=1

10] 
[-10.0,  

10.0] 

Griewenk 
f(x)= [

𝑥𝑖
2

4000
−𝑛

𝑖=1

 𝑖=1𝑛cos𝑥𝑖2𝑖+ 1] 

[-600.0, 

600.0] 

Quartic f(x)=   𝑖𝑥𝑖
2 +  𝑟𝑎𝑛𝑑 0, 1  𝑛

𝑖=1  [-1.28, 

1.28] 
Spherical f(x)=  𝑥𝑖

2𝑛
𝑖=1  [-100.0, 

100.0] 

 

 

 

 

 

 

 

 

 
Table 2. Benchmark Functions with their Global Minimum 

 

Function 

 
Global Minimum 

Ackley f(x
*
)=0, at x=0 

Rastrigin f(x
*
)=0, at x=0 

Griewenk f(x
*
)=0, at x=0 

Quartic f(x
*
)=0, at x=0 

Spherical f(x
*
)=0, at x=0 

 
Results implemented on different standard function is given in table 

1. To make a fair comparisons parameters used are same for every 

benchmark functions and everyversions of PSO i.e particles 35, 

inertial weight𝜔 = .73864 , for 200 iterations and velocity clamping 

upto 15% and c1 and c2 = 1.49618[5]. The results from the Table 1. 

clearly indicate that PGCPSO is a better option than any of the other 

three. Mostalgorithm perform well in case of unimodal functions but 

they fail to provide a better result for multi-modal functions but from 

the table it can be clearly observed that PGCPSO also provides a 

good solution for multimodal benchmark functionthan the 

comparison algorithms due to it's better exploration capability in 

multi - modal functions than compared to other algorithms. 
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Table 3. Result Table 

Function PSO GCPSO RegPSO PGCPSO 

Ackley Mean    

Max 

Median       

Std.dev 

1.543326 

3.290502 

1.35123 

1.332453 

Mean    

Max 

Median       

Std.dev 

2.8635e-2 

2.0606e-5 

2.1316e-2 

1.3631e-10 

Mean    

Max 

Median       

Std.dev 

4.6915e-7 

8.7023e-3 

4.4632e-7 

1.4519e-7 

Mean    

Max 

Median       

Std.dev 

1.0516e-15 

1.1369e-17 

3.5527e-15 

1.8299e-14 

Rastrigin Mean    

Max 

Median       

Std.dev 

13.77887 

15.03676 

8.399105 

1.507193 

Mean    

Max 

Median       

Std.dev 

0 

0 

0 

0 

Mean    

Max 

Median       

Std.dev 

2.6824e-11 

1.3337e-9 

2.3981e-14 

1.886e-10 

Mean    

Max 

Median       

Std.dev 

0 

0 

0 

0 

Griewenk Mean    

Max 

Median       

Std.dev 

0.057967 

13.054357 

0.023109 

0.016779 

Mean    

Max 

Median       

Std.dev  

0.0039444 

0.019719 

2.8869e-18 

0.0052078 

Mean    

Max 

Median       

Std.dev    

0.013861 

0.058867 

2.3981e-14 

0.01552 

Mean    

Max 

Median       

Std.dev  

0.00025347 

0.0015353 

2.9696e-9 

0.00357468 

Quartic Mean    

Max 

Median       

Std.dev  

10.553674 

15.836762 

8.294792 

1.747389 

Mean    

Max 

Median       

Std.dev  

3.4938e-15 

8.1481e-16 

2.3981e-14 

1.1995e-15 

Mean    

Max 

Median       

Std.dev  

3.1351e-17 

9.5804e-24 

2.5503e-21 

2.2243e-18 

Mean    

Max 

Median       

Std.dev  

1.5587e-28 

2.716e-27 

1.8532e-30 

4.035e-26 

Spherical Mean    

Max 

Median       

Std.dev  

0.013378 

0.014291 

0.011198 

0.000905 

Mean    

Max 

Median       

Std.dev  

3.9168e-16 

5.8856e-14 

9.3092e-19 

1.0291e-18 

Mean    

Max 

Median       

Std.dev  

9.2696e-19 

4.9611e-17 

5.8252e-25 

8.6636e-21 

Mean    

Max 

Median       

Std.dev  

4.3776e-28 

7.407e-27 

3.4564e-29 

1.2121e-27 

.

 

 

5. CONCLUSION 
An approach for dealing with the stagnation problem in PSO has 

been tested by building into the algorithm a mechanism to 

automatically avoid premature convergence. The GCPSO 

mechanism helps liberate particles from the state of premature 

convergence and enables continued progress toward a global 

minimizer. PGCPSO has been shown to have better mean 

performance than the algorithms compared with a result that would 

have been more pronounced had only multi-modal bench- marks 

been used. PGCPSO also consistently outperformed in the 

presence of noise. 

Given sufficient function evaluations, PGCPSO was able to solve 

the stagnation problem for each benchmark tested and approximate 

the true global minimizer with each trial conducted. Though the 

parameters used for PGCPSO worked consistently across the 

benchmark suite, it is not claimed that parameters have been fully 

optimized and it is not claimed that particles will not converge 

prematurely or itis absolutely free from stagnation. While 

PGCPSO seems capable of reducing the problem-dependency 

usually seen in the standard PSO algorithms so that 

parameteroptimization may be less important. 
PGCPSO appears to be a good general purpose optimizer based on 

the benchmarks tested, which is certainly encouraging; however, it 

is cautioned that the empirical nature of the experiment is not a 

theoretical proof that PGCPSO will solve every problem well 

certainly, its performance must suffer somewhere. Future workwill 

try to understand where the algorithm suffers in order to 

understand any limitations and apply it to the proper contexts. This  

would allow eventual solution refinement of greater precision 

rather than repeatedly cutting of the local search in favor of 

exploration elsewhere. It has been empirically observed that 

clamping velocities to fifteen percent of the range of the search 

space on each dimension often provides a quicker convergence to 

 

 

 

solutions of higher quality in conjunction with standard PSO. 

PGCPSO using standard Gbest PSO as its core, however, 

appearsto benefit from larger velocities such as those clamped 

tofiftypercent of the range on each dimension. The larger 

maximumvelocity facilitates exploration and moresignificant 

momentum by which to resist repeated premature convergence to 

the remembered global best. 

PGCPSO seems to improve performance consistency with one set 

of parameters by facilitating escape from potentially deceitful local 

wells and to solve simple, unimodal problems free of entrapping 

wells quite well. It is suspected that PGCPSO may provide a 

degree of scalability previously missing in the standard PSO 

algorithm. 
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