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1 Vision of System

The vision of the system, as expressed by the client, would be to create
a standalone, fully functioning, experimental and teaching tool that brings
to life, the functioning of a Particle Swarm Optimisation problem solver
coupled to a real time graphical visualiser to display the workings of the
Particle Swarm Optimisation problem solver to the user.

2 Scope of System

The Swarm Visualiser, as commissioned by Mr Christopher Cleghorn, has
two fundamental responsibilities that are encapsulated within a single soft-
ware program that is deployed to and used from a single computer at a
time.

The first responsibility is to provide a underlying, adaptable and fully
functioning Swarm Based Optimisation System that makes use of Swarm
Based Optimisation algorithms such as the Particle Swarm Optimisation
Model or PSO Model to solve problems. The problems that need to be
solve are mathematical functions, of various dimensionality and domain.

The second responsibility, and the more important one, is to provide
a real time graphical visualisation of the Swarm Based Optimisation Al-
gorithm as it functions in terms of visualising all essential elements of the
Swarm Based Optimisation Algorithm as it performs problem solving and
then presenting this information to the user in a real time and understand-
able manner.

To this end, our system is ultimately responsible for providing both the
underlying infrastructure in which the Swarm Based Optimisation Algo-
rithm will operate but also for providing the interface infrastructure through
which the user will access the underlying Swarm Based Optimisation Algo-
rithm functionality.

2.1 Extended Scope

Below are some feature that extend on the core scope which would enhance
the systems usability. The stretch goals are listed below.

• Functionality for a use to generate a predefined starting population for
an algorithm in the form of a csv file and import it into the system.

• Functionality to export the results of an algorithm to a csv file.
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3 Software Architecture Overview

Figure 1: A diagram to indicate the proposed system architecture

4 Architectural Requirements

4.1 Scope

In terms of the Architectural Scope of the project, we have a task that
requires a minimal reliance on extremal frameworks and APIs. This is on
account of the fact that our product is at its core a desktop application
designed to be run in an isolated environment. Additionally, the focus on
minimal interference requires that we design the system in such a manner
that there is as low a possibility of bottlenecking as possible. As such, we
will (as far as possible) minimize the technologies being used to standard
C++ and OpenGL. Additionally, the system must be designed in such a
manner that the Visualizer and the underlying Swarm Based Optimisation
Algorithms are not tightly coupled. It should be easy to adjust one or the
other without making adjustments throughout.

4.2 Quality Requirements

Performance Performance is arguably the most vital requirement in the
system that in the Visualizer’s functionality. It can be defined as follows:
The amount of work accomplished in a measured time interval.
In our case, we are going to make use of reference to latency and frames
per second as a measure of performance, where latency is defined as a
time interval during which a response is achieved given some request and
frames per second, or fps, is defined as a measurement of how many unique
consecutive images can be shown in a graphical context per second. It should
be noted that due to the graphical implications of our task, an important
factor in performance is rendering resolution.
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As such, the following requirements are set:

• The architecture of the design should be efficiently designed such that
when a request is issued to the Visualizer, such as changing the ob-
jective function, there is a minimal latency involved in generating a
response.

• The visualizer should be allow at least the following resolutions: 800x600,
1024x789, 1920x1080

• Given the maximum resolution 1920x1080, the Visualizer should be
capable of running at a consistent 60fps or greater when being run
using a mid-tier or above Graphical Processing Unit (for example).

• Given the fact that split-screen functionality is to be implemented,
this must be done in a manner such that performance is not hindered
dramatically (hence, do not render multiple full resolution images and
shrink them post-rendering).

Scalability Scalability refers to the project’s ability to handle a large
workload for extended time periods and the methods through which this is
dealt. Being an isolated application, the only workloads to be experienced
are in terms of internal utilization. Hence, in terms of the task described,
potential scalability issues lie within the task of assigning a large number of
particles in a particular instance of running.
However, the system must still be capable of handling a large number of
particles in order to achieve a satisfactory result. As such, the requirement
in place is that the system should be capable of handling a large (with some
upper limit based on hardware limitations) number of particles while still
obtaining a good performance result. This will be achieved through effective
use of object memory management and design patterns.

Flexibility Flexibility is a very important quality requirement for the sys-
tem. Various pieces of the underlying PSO or Particle Swarm Optimisation
system that the Swarm Visualiser is meant to be visualising are dependent
on configuration parameters and pluggable components such as Objective
Functions. It is important that the system be flexible enough so that users
can modify the operational parameters of the system without having to per-
form major code changes, ideally without having to perform code changes
at all.
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This is particularly important when you consider that the system should
not depend heavily on hard-coded components like objective functions but
must rather be able to switch to new ones as and when the client requires
it.

Usability Usability is another important quality requirement. Ultimately,
the system is meant to be used in some capacity as both an experimental
tool and a tool for aiding in teaching. Both of these would therefore require
that the system be fundamentally easy to use. Some degree of technical
competence is assumed on the part of the users,but for the most part, inter-
facing with the system to access core functionality should not be unintuitive
or frustrating.

An additional aspect of this usability is defined in terms of how usable
the interface to perform modifications to the system must be. The system,
as envisioned, is meant to be highly configurable and the means by which
this is accomplished must be as simple as possible.

Although not strictly mandated, traditional values of usability design will
be considered in order to deliver on a user-friendly interface that supports
maximum usability without sacrificing functionality.

4.3 Integration and Access Channels

The Swarm Visualiser or Particle Swarm Visualisation System that we are
developing has very little in the way of integration requirements in terms
of needing to interface and integrate with external services and programs.
Rather, the client has expressed a desire for the system to function largely as
a self-dependent and standalone system meaning that all of the functionality
required by the system will be provided on-site by the program.

That being said, the requirements for the system in terms of access chan-
nels is much more important. The client has specified that they wish for
a single-point-of-access system. This translates to the provision of a single
user interface that the client(s) will use to interact with and express the
system’s functionality. This single user interface must be designed such that
it provides the graphical/visualisation requirements as specified as by the
client, such as 4-screen display and support for various screen resolutions,
but also must provide an interface through which the client can interact
with and access the underlying system.

6



Further provision for alternative deployment systems, beyond deployment
of a single computer-based application, is limited due to the existing hard-
ware demands that are contiguous to the performance requirements of the
system.

5 Architecture Patterns

5.1 Variant MVC with Layered Controller

Motivations

• We separate the Graphical engine from the optimisation algorithm.

• We enable concurrent development of system components as each com-
ponent is largely independent.

• It enables different team members to work on different components
without being dependent on the progress of the other components.

• It enables components of the system to be modified and updated with-
out requiring system wide updates.

Components The Model View Controller design is structured as follows:
The Model handles business logic and data, the View presents data to the
user as some valid interface and the Controller receives requests and calls
appropriate resources to handle them.

• Model: The Model in our system here would be a shared data storage
pool that would be used by the optimiser to push data to as it performs
its operations. Furthermore, the Rendering layer will be polling, or
pulling data, from the model to satisfy rendering demands. The great
benefit of this is that because both components can perform pushes
and pulls to the shared data source, and synchronisation can be applied
to ensure data integrity, we can decouple the Rendering Layer from
the Optimiser layer and cater for various differences such as latency
or frames per second. The rendering layer will always render what it
can get from the Model at the point of call, and the Optimiser layer
will always push what it has currently done. From this, we can apply
various synchronisation points that allow us to stagger/bridge the gaps
between both layers.
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• View: The View in our system is representative of the Client or Inter-
face Layer (often referred to as the Client component throughout this
text). The user will be using this layer to view the results of visualisa-
tions but it also serves as the primary input point for configuring the
Optimiser and the Rendering Layers.

• Layered Controller: The Controller in our system is split into two sub-
sections designed in a layered architecture (bound to the local scope).
The two sections are the Rendering Layer and the Optimiser layer.

1. Optimiser Layer: This is the sub-component of the system in
which the optimization algorithms are realized. In short, a gen-
eral purpose interface for an optimization algorithm is defined
which is then realized. This section then performs the function
of a generic interchangeable optimization algorithm while updat-
ing the shared data pool as it operates. The optimiser will then
notify the second layer, the Rendering Layer, when some job can
be done.

2. Rendering Layer: This layer is responsible for the actual visuali-
sation of the system. It makes use of the shared data storage pool
and, when it receives some notification (when some changes have
occured to the data pool) from the Optimiser layer, it renders
the scene accordingly and passes that back to the View, to end
the MVC cycle.
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5.2 Event-Driven Architecture

The above mentioned MVC pattern highlights and specifies the system
components at a high level. This high level description does not encapsulate
a behavioural specification at an architectural level in terms of the project.
To this end, we turn towards the Event-Driven Architectural pattern to
further specify the system.

To begin to understand the relevance of the pattern to the system, consider
the following definitions:

• Event: A change of State.

• Event Flow: a sequence of layers that mediates the event in the system.

– Event Generator: The Event Generator is the component that
produces the initial event and the initial sense in the system that
an event has occurred.

– Event Channel: The Event Channel is the medium by which the
event is processed to the processing engine.

– Event Processing Engine: The Event Processing engine is where
the event is selected and the response is executed.

– Downstream Event-driven Activity: Here is where the conse-
quences of the event being processed are made visible.

Considering the above definitions, we will consider a use case of the system
to indicate how the Event-Driven Architectural pattern is in play.

As shown by the diagram below, a standard use case of system operation
would be the running of an iteration of a Optimisation Process. The Itera-
tion involves 3 components: an Optimiser, a Datastore(Snapshot Manager)
and a Graphics Processor.

The Optimiser at the point of 1, has finished perform an iteration. The
end result of the iteration, is producing a snapshot. This results in our
Event being created. The Snapshot Manager is the communication channel
for this event. The enqueue of the Snapshot makes that event visible to the
Event Processing Engine, the Graphics Processor. The Graphics Processor
is made aware of the new system state once the enqueue is complete and
it will take the appropriate action, by dequeuing the snapshot and then
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Figure 2: A sequence diagram to indicate the point of events in the system

processing it. Once this is complete, the Snapshot Manager will have one
more space, which is the consequence propagated to the system. The cycle
begins again with the Optimiser calling enqueueSnapshot again.

This event-driven cycle is found in many other areas of the system since
the various components will only react once other components have started
to function, furthering the system by processing and generating events,
which can be defined at various levels of system granularity.

6 Programming Paradigm

In the programming Paradigm section, we will present a paradigm that
we have considered for the project and used in order to adapt to a more
traditional imperative paradigm as dictated by the current language imple-
mentations of C++.

6.1 Functional Reactive Programming

Functional Reactive Programming is one such programming style that
promotes data driven design. There are 3 common divisions of FRP:

• Discrete - Formulations such as Event-Driven FRP and Elm require
that updates are discrete and event-driven. These formulations have
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pushed for practical FRP, focusing on semantics that have a simple
API that can be implemented efficiently in a setting such as robotics
or in a web-browser.

In these formulations, it is common that the ideas of behaviors and
events are combined into signals that always have a current value, but
change discretely.

• Continuous - The earliest formulation of FRP used continuous seman-
tics, aiming to abstract over many operational details that are not
important to the meaning of a program. The key properties of this
formulation are:

– Modeling values that vary over continuous time, called ”behav-
iors” and later ”signals”.

– Modeling ”events” which have occurrences at discrete points in
time.

– The system can be changed in response to events, generally termed
”switching.”

– The separation of evaluation details such as sampling rate from
the reactive model.

This semantic model of FRP in side-effect free languages is typically
in terms of continuous functions, and typically over time.

There are two common usages of FRP in systems: push-based and pull-
based systems. Both have potential advantages and disadvantages within
the context of the system.

• Push-based systems take events and push them through a signal net-
work to achieve a result. This would be then that events created by the
optimiser layer would then be pushed through the signal network such
that they were delivered to the client component via the Rendering
layer.

• Pull-based systems wait until the result is demanded, and work back-
wards through the network to retrieve the value demanded. This would
be the opposite in that the client component would demand certain
results/services and the request would be filtered down towards the
optimiser layer and then delivered back to the Client component via
the Rendering layer.
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By making use of a shared data pool, to which both the Rendering and
Optimiser layer are able to pull and push data from, we obviate the need
for an explicit message passing framework.

6.2 Adapations for Project

6.2.1 Language Support

The most pressing barrier for adopting this programming paradigm di-
rectly into our project would be the lack of existing C++ implementations
for it. The language choice for the project was supplied by the client and this
has meant direct adoption of the paradigm is not possible within operating
parameters.

6.2.2 Implications for the Project

Despite a lack of direct adoption, we have been strongly influenced by the
paradigm with regards to designing the project to make use of the methods
and systems espoused by Functional Reactive Programming. Although fol-
lowing an Imperative paradigm, we have structured the system using both
events and MVC to create a system with push/pull-based systems, events
and discrete and continuous mathematical processing.

7 Unit Testing

With a data orientated approach, your aim is to create a compartment
of code that contains functions that will typically only have a single use.
i.e. no decisions will ever be made in the functions, the decisions will be
made the the graphics engine and the graphics engine will use this grab bag
of functions to execute whatever it has decided. This approach allows for
powerful, comprehensive unit testing due to the fact that the functions are
minimalistic in nature. This is especially useful when debugging a graphical
applications as you can unit test an image output, but if you have a com-
prehensive unit testing backbone for the functions then it can make it easier
to see logical mistakes.

The basic premise of data orientated design is to design the code around
the data, instead of abstracting the data behind models. While this may
seem counter intuitive it is still possible to achieve a familiar level of ab-
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straction while still making use of the performance increases that come with
the approach.

At an architectural level, unit testing is typically not present. However,
the specific testing framework, Google Test, requires a specific file directory
hierarchy and structure in order to work. This requires us to alter directory
structure and makelist files such that a Google Test folder can be injected
into any working branch of the project so that unit tests can be run without
having to perform a manual restructuring of the project.

7.1 Client Layer

The client layer will handle Graphical User Interface elements that the soft-
ware user will interact with, and will present the output of the Graphics
layer(and implicitly the Optimiser layer) to the user. The user will also use
the client layer to set parameters of the optimiser layer to determine which
fitness landscape will be used, which optimisation algorithm will be used,
and also let the user set the optimiser’s parameters.

7.2 Technologies

7.2.1 OpenGL

OpenGL was chosen as the graphics engine due to the fact that it will work
cross-platform, as opposed to DirectX, and many of the CIRG members run
Linux machines, as per client stipulations. Since this program is primarily
going to be used by them it makes sense to cater for the target market.

7.2.2 Fruit

Fruit is a dependency injection framework for C++, loosely inspired by the
Guice framework for Java. It uses C++ metaprogramming together with
some new C++11 features to detect most injection problems at compile-
time. It allows to split the implementation code in ”components” (aka
modules) that can be assembled to form other components. From a com-
ponent with no requirements it’s then possible to create an injector, that
provides an instance of the interfaces exposed by the component. This is a
good option for the DI framework as unlike other c++ DI frameworks most
of the checks are done at compile-time to try catch the errors early. Another
bonus is that the syntax is similar to jUnit so it will be more comfortable
to work with initially.
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7.2.3 GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-
source C/C++ extension loading library. GLEW provides efficient run-time
mechanisms for determining which OpenGL extensions are supported on the
target platform. OpenGL core and extension functionality is exposed in a
single header file. GLEW has been tested on a variety of operating systems,
including Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris.

7.2.4 GLM

The visualiser component will make use of the OpenGL Mathematics(GLM)
framework. This is a light-weight, optimized mathematics framework that
handles matrix manipulations and shader control.

7.2.5 GLFW

The interface will make use of the GLFW. GLFW is an Open Source, multi-
platform library for creating windows with OpenGL contexts and receiving
input and events. It is easy to integrate into existing applications and does
not lay claim to the main loop.

7.2.6 CMake

CMake is an open-source, cross-platform family of tools designed to build,
test and package software. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files.

7.2.7 Fraps

Fraps is a universal Windows application that can be used with games using
DirectX or OpenGL graphic technology. For our purposes it will be used
as the benchmarking software as it can how how many Frames Per Second
(FPS) you are getting in a corner of your screen. Perform custom bench-
marks and measure the frame rate between any two points. It can also save
the statistics out to disk and use them for your own reviews and applica-
tions. It also has useful Screen Capture Software as well as Realtime Video
Capture Software which can be useful for demoing purposes.
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7.2.8 Cppcheck

Cppcheck an open source code analysis tool specifically for the C language.
In terms of applicability, Cppcheck will be used to analyse the C++ code
written for the project to ensure that a single consistent coding standard
that will add in the maintenance of the project as well as provide a consistent
standard that can be enforced across all of the system documentation.

8 Architectural Components

8.1 Graphics Processor

The graphics processor, as a component, is responsible for converting the
raw data generated by the optimiser and visualising it in a user friendly
manner.

8.1.1 Performance

With the requirement that the display should maintain 60fps under certain
hardware conditions the performance of the Graphics processor is of key
importance. Most of the heavy duty work that the processor will be doing
will be in the shaders which are notoriously difficult to debug and test as
they are written in GLSL, a domain specific language which has no sort of
testing framework. Ways to approach this would be to have many simple
shaders and then layer those shaders.

8.1.2 Scalability

The graphics processor needs to be scalable the render capability can be
scaled. This can be done simply as the boiler plate code is fairly static
and then by simply abstracting the shader program it is simply to simply
add/remove and layer the shaders to fully customise the render quality. The
graphics processor also needs to be able to visualise multiple instances of
optimisers.

8.1.3 Reliability

The graphics processor should be able to recover if an error were to occur
in either the message passing or optimiser. Correctly signalling the graphics
processor should keep the user informed about what is happening in the
system.
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8.2 General Optimiser

The General Optimiser is much less performance bound than the other
system modules because of the use of an intermediary. Generally speaking,
the Graphics Processor will faster or slower than the General Optimiser,
depending on a variety of factors. Typically, this means that the General
Optimiser can afford to, with the appropriate measures, function at a slower
speed than the Graphics Processor.

8.2.1 Quality Requirements

1. Flexibility: The General Optimiser must be flexibility enough in de-
sign such that a user parameter configuration change will be handled
internally without requiring a program restart or recompile, that is
perform runs, and then be able to perform further runs without re-
quiring recompilation of the system.

2. Performance: As mentioned above, the performance requirements of
the General Optimiser are not as stringently defined as with the Graph-
ics Processor. However, the requirement is somewhat implicit in the
fact that the optimiser will have to provide the graphics processor with
enough data to allow it to animate the landscape smoothly but per-
haps a more important performance condition would be the stopping
conditions. Being able to accurately predict when a swarm has stag-
nated will allow for the simulation to exit in a timely manner so that a
user does not have to wonder whether or not something is happening.

3. Reliability: Reliability is an important concern in that the General
Optimiser must be reliable in two ways: the first is the component
itself should not fail often. In the event of failures, it must be able
to recover without compromising the system. The second area, per-
haps more critically, is that the results produced by the General Op-
timiser in terms of the particle positions and values etc must be con-
sistent with the expected problem solving capabilities and capacities
of Swarm-based problem solving methods. That is, we should not ex-
pect variance in results that would not be possible of a Swarm-based
problem solving approach to produce.

4. Scalability: Scalability is an important concern in that the user has the
capacity to perform simultaneous problem solving methods on multiple
screens. The General Optimiser must therefore be able to support
multiple problem solving runs at the same time.

16



8.3 Manager

The Manager component is the high level component that is the core
component that serves as the intermediary component between all other
components in the system. All other components will pass messages to the
Manager who will then pass further messages as needed, which establishes
and integrates the system as a whole in terms of communication pathways.

8.3.1 Quality Requirements

1. Integrability: The Manager component is the core of the integration
efforts.No components directly interact with each other and as a result,
all components direct interact with the Manager. This means that the
Manager must be Integrable in terms of supporting communications
between the other components.

2. Reliability: Reliability is a core component of the Manager module in
that it must be reliable in terms of the component failing as rarely as
possible. Should the manager component fail, then the system as a
whole will suffer a critical error that will not be recoverable.

3. Scalability: The Manager will have to manage potentially multiple
concurrent Optimisers and other components operating in concert to
solve multiple problems. In this way, the Manager must be able to
scale to function with as many as 4 concurrent problem solving and as
few as 1.

8.4 User Interface

The purpose of the user interface component is to initially allow the user
to create the necessary settings package and then allow the user to run
optimisers according to their specifications.

8.4.1 Reliability

The interface is the primary point of information access for the user. In this
respect it should be robust and informative to the user.

8.4.2 Usability

The interface should conform to good usability standards in terms of not
requiring extensive training and not requiring retraining in order to use it
again after sufficiently large time has elapsed between uses.
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8.4.3 Scalability

The interface should be able to scale with evolving functional requirements
and still maintain good usability.
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